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Abstract

The model proposed in part I of this series of articles for characterizing the thermomechanical response of natural
rubber during crystallization is used in this article to model the mechanical e�ects of crystallization in natural
rubber. Material functions are evaluated such that the model can reproduce existing experimental results on

instantaneous rubbery elastic response of fully amorphous natural rubber (228C), increase in elastic modulus of
unconstrained natural rubber as a function of crystallinity (08C), and stress relaxation associated with crystallization
at constant stretch (ÿ268C). The continuum thermodynamic roots of the modeling process have made it possible to

use experimental results at di�erent temperatures to fairly accurately capture, in a single model, the temperature
dependence of the mechanical response of natural rubber. Initial comparison to existing data, not used in the
development of the model, indicates good agreement between the model and experiment. # 2000 Elsevier Science

Ltd. All rights reserved.

Keywords: Natural rubber, Crystallization; Continuum modeling; Non-isothermal, Stress relaxation; Elastic modulus; Thermodyn-

amics of crystallization; Kinetics of crystallization; Phase transition; Nonlinear mechanical response

1. Introduction

In the ®rst part of this series (Negahban, 2000a), a general theoretical structure was laid out for
modeling the thermomechanical e�ects of crystallization in natural rubber. In the second part
(Negahban, 2000b), elementary thermodynamic properties such as heat capacity and melting
temperature were used to evaluate some of the material parameters for this model. In this part, existing
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experimental results will be used to evaluate material parameters in the model associated with the
mechanical e�ects of crystallization. Included in the experimental results used to model the material
parameters are the instantaneous rubbery elastic response of the amorphous rubber, the gradual increase
in the elastic modulus occurring in unconstrained isothermal crystallization, and stress relaxation
accompanying isothermal crystallization under stretch.

As described in the ®rst part of this series, a general constitutive equation for the description of
thermomechanical e�ects of crystallization in polymers was developed in Negahban (1997a). This
general formulation was based on an expression for the current free energy, c(t ), of the form

c�t� � b�t�cA�t� �
�t
ts

cC�t,s�a�s�ds �1�

where b(t ) is the current mass fraction of amorphous material, a(s ) is the rate of crystallization at time
s, ts is the time crystallization starts, t is the current time, cA(t ) is the e�ective free energy per unit mass

Nomenclature

a Rate of crystallization in mass per unit time
b Mass fraction of amorphous material �� 1ÿ � tts a�s�ds)
B Left Cauchy stretch tensor (FFT )
E Elastic modulus
F(t ) Deformation gradient at current time t
Fs(t ) Relative deformation gradient comparing the con®guration at time t to the con®guration

at time s
F�(t ) =1/J 1/3(t )F(t )

F�s �t� =J 1=3�s�
J 1=3�t�Fs�t�

J Volume ratio (=det[F])
JA Volume ratio of the amorphous polymer
JC Volume ratio of the fully crystalline polymer
t Current time
ts Starting time of crystallization
T Cauchy stress tensor (true stress)
y Temperature
y0 Reference temperature
ym Melting temperature
l Stretch ratio
r0 Mass density in reference con®guration
r Mass density
rA Mass density of the amorphous polymer
rC Mass density of the fully crystalline polymer
save Average principal Cauchy (true) stress (=1/3 tr(T))
c Free energy per unit mass
cA(t ) E�ective free energy of the amorphous part
cC(t,s ) E�ective free energy at the current time of the crystals (or parts of crystals) formed at time

"s"
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in the amorphous fraction, and cC(t,s ) is the e�ective current free energy per unit mass in the crystal
created at time s. The relation between the fraction of amorphous material and the rate of
crystallization is given by

b�t� � 1ÿ
�t
ts

a�s�ds: �2�

For the purposes of modeling the behavior of natural rubber, the general expressions for the e�ective
free energies of the two phases are selected as

cA�t� �
X2
i�0

Ai

ÿ
I �1 ÿ 3

�i �3�

and

cC�t,s� �
X2
i�0

Ci

ÿ
I �4 ÿ 3

�i
: �4�

In these relations, the coe�cients are functions described as

Ai�b�t�,y�t��
and

Ci�b�t�,y�t�,b�s�,y�s��, �5�
where y denotes temperature. The invariants I �1 and I �4 are given in terms of the traditional invariants
by extracting volumetric changes. These relations are given by

I �1 �
1

J 2=3�t�I1

and

I �4 �
J 2=3�s�
J 2=3�t� I4, �6�

where J = det[F] is the volume ratio, ``s'' denotes time s, and ``t'' denotes the current time t. The
traditional invariants are given by I1=tr[B(t )] and I4=tr[Bs(t )], where B(t )=F(t )FT(t ) and Bs�t� �
Fs�t�FT

s �t�: As shown in Fig. 1, F(t ) denotes the deformation gradient comparing the current
con®guration to the reference con®guration, and Fs(t ) denotes the deformation gradient comparing the
current con®guration to the con®guration at time s.

The result of the development presented in the ®rst article was an expression for Cauchy stress, T,
given as

T � save�t�I� 2r�t�b�t��A1 � 2A2

ÿ
I �1 ÿ 3

���
B��t� ÿ I �1

3
I

�
� 2r�t�

�t
ts

�
C1 � 2C2

ÿ
I �4 ÿ 3

��
�

B�s �t� ÿ
I �4
3

I

�
a�s�ds, �7�

M. Negahban / International Journal of Solids and Structures 37 (2000) 2811±2824 2813



where save is the average principal stress (negative the hydrostatic pressure), I is the second order tensor
identity and r(t ) is the current value of density, given by

1

r�y,b� �
JA�y�
rA0

b� JC�y�
rC0

�1ÿ b�, �8�

where rA0
� 910 kg=m3 and rC0

� 1000 kg=m3 are, respectively, the density of the amorphous and
crystalline phases of natural rubber at the reference temperature,

JA�y� � 1� dJA

dy
�yÿ y0�,

JC�y� � 1� dJC

dy
�yÿ y0�, �9�

and where, for natural rubber, the reference temperature will be taken as y0=2988K and

dJA

dy
� 6:249� 10ÿ4,

dJC

dy
� 3:132� 10ÿ4: �10�

In what follows, the expression given in Eq. (7) for Cauchy stress will be used in combination with
existing experimental results to evaluate the material functions A1, A2, C1 and C2. The material
functions A0 and C0 were evaluated in Negahban (2000b) based on using the elementary thermodynamic
properties of natural rubber. The form selected to model the functions A1 and A2 can be written as

Ai � �Ai1 � Ai2�1ÿ b��y, �11�
which are linear functions of crystallinity and have a primarily linear dependence on temperature, as is
suggested by the statistical theory of rubber elasticity (See Treloar, 1975). Other than A11, which must
depend on temperature to accommodate e�ects associated with thermal expansion, the other three
material parameters Aij will be taken as constant. The form of the material functions used to model C1

Fig. 1. Reference, intermediate, and current con®guration of the macroscopic body and the deformation gradients.
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and C2 is

Ci � fCi1 � Ci2�1ÿ b�s��gf�y�t��, �12�
where the material parameters Cij are selected as constants and the function f[y(t )] is appropriately
selected to characterize the temperature dependence of the modulus of crystalline natural rubber.

Section 2 will show how to evaluate A11 and A21 from experimental data obtained by Min (1976) for
the instantaneous response of amorphous natural rubber. This is done using the tensile stress right after
loading. It will be shown that a modi®ed neo-Hookean model for fully amorphous natural rubber
captures the instantaneous response accurately, even though it might be a poor model for the
equilibrium response.

In Section 3, the material parameters Cij are evaluated from experimental results given by Leitner
(1955) on the isothermal increase in elastic modulus of unconstrained natural rubber, and the function
f[y(t )] is taken to capture the known dependence of the elastic modulus on temperature, as described by
Van Krevelen and Hoftyzer (1976). This is done by assuming the amorphous rubber does not contribute
signi®cantly to the change in modulus. This assumption is later veri®ed by comparing the model to
experimental results, after including all the material parameters.

In Section 4, the material parameters A12 and A22 are evaluated based on isothermal experimental
results done by Gent (1954), giving the relation between stress relaxation and crystallinity in stretched
natural rubber.The experiments of Min (1976) were conducted at 228C, the experiments of Leitner
(1955) were conducted at 08C and the experiments of Gent (1954) were conducted at ÿ268C. It is
important to recognize that in what follows, three distinctly di�erent experiments which were conducted
at three di�erent temperatures are used to evaluate the material functions for a single continuum model.
Combined with the material functions evaluated in Negahban (2000b), these material functions fully
describe the proposed free energy of natural rubber. The only missing element will be a model for the
rate of crystallization.

2. Modeling fully amorphous natural rubber

Natural rubber before crystallization is an amorphous polymer. In the rubbery range, amorphous
natural rubber will respond as any other rubbery elastic material. As will be shown in the following, the
response of fully amorphous natural rubber is well represented by a modi®ed neo-Hookean model. The
constant for this model will be obtained using the experimental results of Min (1976). To minimize the
contribution of crystallization, stress evaluated by Min immediately after loading will be used as
representative of the amorphous response.

The experimental results of Min (1976) are for uniaxial extension of natural rubber. Since there is no
need to keep track of intermediate con®guration for the elastic response of the fully amorphous material,
in this section it will be implied that all variables are evaluated at current time, avoiding unnecessary
complication in the notation. Uniaxial extension along the 1-1 coordinate axis is given by the stress

T � T11e1 
 e1 �13�
and is characterized by the deformation gradient

F � le1 
 e1 �
����
J

l

r
�e2 
 e2 � e3 
 e3�, �14�

where e1, e2 and e3 are the base vectors for a rectangular coordinate system, as shown in Fig. 2, Tij are
the components of stress, l is the stretch along the 1-1 direction, and ``
 '' denotes the tensor product.
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In the absence of crystallinity, the expression for the Cauchy stress given in Eq. (7) becomes

T � saveI� 2r
�
A1jb�1 � 2A2jb�1

ÿ
I �1 ÿ 3

���
B��t� ÿ I �1

3
I

�
: �15�

Substitution of Eqs. (11), (13) and (14) into this equation results in two independent equations.
Elimination of the average stress between these equations results in the expression for axial stress T11

given by

T11 � 2ry

�
A11 � 2A21

�
l�2 � 2

l�
ÿ 3

���
l�2 ÿ 1

l�

�
, �16�

where l�=l/J 1/3 is the axial stretch relative to the stress free state of natural rubber at the current
temperature, as opposed to l which is the stretch relative to the reference con®guration. For fully
amorphous natural rubber

r � r0
1� dJA=dy�yÿ y0� : �17�

In the ®rst part of this series (Negahban, 2000a), it was shown that for natural rubber, r0=910 kg/m3

and dJA/dy and y0 are given above.
Fig. 3 shows the data of Min (1976) for axial stress at room temperature (228C) taken one second

after loading and plotted versus strain. The solid curve shows the ®t of the proposed model for the
following values of the material parameters

A11 � Q

2r0

�
1� dJA

dy
�yÿ y0�

�
and

A21 � 0, �18�
where Q = 1.373 � 10-3 MPa/K. As can be seen, this modi®ed neo-Hookean model captures the
instantaneous response of natural rubber very well.

Fig. 2. Uniaxial extension, coordinate directions, and stretch ratio.
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3. The increase in rigidity with crystallization

There is a noticeable increase of elastic modulus with the crystallization of natural rubber. Even small
amounts of crystallization induce very large changes in the elastic modulus of natural rubber. The
experimental results of Leitner (1955), shown in Fig. 4, indicate an approximately 100 fold increase in
the elastic modulus as a result of about 25% crystallization. As can also be seen from this same ®gure,
the relation between the increase in modulus and crystallinity is nonlinear, even at these low fractions of
crystallized material. This e�ect is primarily captured by material parameters associated with the
crystalline phase, since the amorphous phase is so much softer and, as a result, has a much smaller
contribution to the change in modulus.

Leitner (1955) evaluated the elastic modulus of unconstrained natural rubber at 08C as a function of
the increase of its density. This was done by allowing natural rubber to undergo unconstrained
isothermal crystallization, while monitoring the change in its density, and slightly extending it from time
to time to calculate its modulus. The basic assumption is that the small extensions needed to evaluate

Fig. 3. Uniaxial stress±stretch diagram of amorphous natural rubber at 228C. Data points are from Min (1976) for stress one sec-

ond after loading. The continuous line is the ®t by the model.

Fig. 4. Elastic modulus as a function of the increase of density for unconstrained natural rubber at 08C. The data is from Leitner

(1955). The curve is the model using all the material parameters.
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the modulus have no noticeable e�ect on the crystallization process. This same assumption will be made
to obtain expressions to ®t the model to the experimental data. Since it is assumed that during the
crystallization process the rubber is unconstrained, it will be assumed that only pure volumetric
deformations will occur during crystallization. This can be represented by the deformation gradient

F�s� � J 1=3�s�I, �19�
where s represents any time between the start of crystallization and the current time, but not the current
time. At the current time, the sample is stretched to obtain the modulus, assuming no crystallization in
the stretching process. Stretching along the 1-1 direction at the current time is represented by a
deformation gradient

F�t� � l�t�e1 
 e1 �
���������
J�t�
l�t�

s
�e2 
 e2 � e3 
 e3�: �20�

The result of extracting volumetric changes is to yield

F��t� � F�s �t� � l��t�e1 
 e1 �
�����������
1

l��t�

s
�e2 
 e2 � e3 
 e3�: �21�

where l�(t )=l(t )/J 1/3(t ) is stretch relative to the stress free con®guration at the current temperature and
crystallinity. In the process of stretching, it is assumed that material has zero stress on the lateral
surfaces such that

T�t� � T11�t�e1 
 e1: �22�
Substitution of Eqs. (21) and (22) into the expression for the Cauchy stress given in Eq. (7) and

elimination of the average principal stress results in

T11�t� � G

�
l�2�t� ÿ 1

l��t�
�
, �23�

where

G � 2r�t�
(
b�t��A1 � 2A2

ÿ
I �1 ÿ 3

��� �t
ts

�
C1 � 2C2

ÿ
I �4 ÿ 3

��
a�s�ds

)
�24�

and

I �1 � I �4 � l�2�t� � 2

l��t� : �25�

The elastic modulus, E, as measured by Leitner is the change in stress as a result of a change in
stretch evaluated at the stress free con®guration. Due to the small changes in cross sectional area due to
crystallization and due to the in®nitesimal strains involved in evaluating the modulus, one need not
distinguish between true and engineering stress. Using this de®nition to obtain the elastic modulus, one
®nds

E � @T11�t�
@l�

����
l��1
� 3Gjl��1, �26�
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where

Gjl��1 � 2r�t�
"
b�t�A1 �

�t
ts

C1a�s�ds
#
, �27�

which, after integration, yields

E � 6r

�
by�A11 � A12�1ÿ b�� �

�
C11�1ÿ b� � C12

�1ÿ b�2
2

�
f �y�

�
: �28�

One can use several di�erent methods to obtain the material parameters. Several points must be taken
into account when ®tting the parameters. First, the crystalline ``modulus'' represented by the material
parameters C11 and C12 is much larger than the amorphous modulus represented by the material
parameters A11 and A12. Since the terms containing A12 and C11 are to the ®rst approximation both
functions of (1-b ), it is impossible to accurately distinguish the contribution of either to the elastic
modulus. As observed by Van Krevelen and Hoftyzer (1976), the dependence of the elastic modulus on
crystallinity is quadratic with the linear term absent. This suggests that one can set C11=0. Also, Van
Krevelen and Hoftyzer suggest that the dependence of the modulus on temperature can be represented
by the function

f �y� � exp

"
k
ym=�y0 ÿ ym=y

ym=�y0 ÿ 1

#
, �29�

where, for natural rubber, ym=3098K, k=-1.15 and �y0 is set equal to 2738K to yield f(273)=1. One can
also assume that the contribution of all the amorphous parameters are negligible if one concentrates on
®tting the modulus at su�ciently large values of crystallinity (su�ciently large so that the modulus is
more than an order of magnitude larger than the modulus of the fully amorphous natural rubber).
Therefore, a good approximation of the elastic modulus can be obtained from the relation

E13r�t�C12
�1ÿ b�2

2
f �y�, �30�

as long as the modulus of the semi-crystalline polymer is much larger than the purely amorphous
polymer. This approximate equation can be used to obtain C12 using one point from the data provided
by Leitner (1955). The data of Leitner is in terms of elastic modulus as a function of percent change in
density. To obtain the fraction of amorphous material, b, from the percent change in density one needs
to solve for the fraction of amorphous material using Eq. (8) to obtain

b � 1=rÿ JC=rC0

JA=rA0
ÿ JC=rC0

, �31�

and one also needs to know the density of fully amorphous rubber at the experiment temperature of
2738K, which is obtained from the relation

rjb�1 �
rA0

JA

: �32�

A representative point obtained from the data of Leitner (1955), with su�ciently large E so that one
can use equation Eq. (30), is E=71 MPa at a change in density of 1.9%. Using the testing temperature
of 2738K to obtain JA and JC from equation Eq. (9), one can show that a 1.9% change in density at
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this temperature is equivalent to b=0.775 (22.5% crystallinity). Substituting into equation Eq. (30), one
obtains

C12 � 0:5
MPa

kg=m3
: �33�

In addition to the data of Leitner, Fig. 4 shows how well the model, after incorporation of all the
material constants (including the ones obtained in the next section), reproduces the response observed
by Leitner.

4. Stress relaxation as a result of crystallization

Crystallization in stretched natural rubber is accompanied by stress relaxation. Experimental results
from Gent (1954) conducted at ÿ268C and reproduced in Fig. 5 show this stress relaxation as a function
of time. What is not apparent in this ®gure, but observed by Gent, is that there is a linear relation
between stress relaxation and the decrease in the volume of natural rubber. Fig. 6, also reproduced from
Gent's paper, shows that stress relaxation can be superimposed on the volume reduction data by linear
superposition. Figs. 5 and 6 can be used to extract the linear relation observed by Gent. This is shown
in Fig. 7. Even though the relation between stress and crystallinity is linear for a given stretch, from Fig.
7 one can see that the dependence on stretch is highly nonlinear.

To incorporate the experiment of Gent into the proposed model, we do the following. In the
experiment, the sample is stretched and held at constant stretch as it crystallizes. This implies that the
deformation gradient can be written as

F�s� � le1 
 e1 �
���������
J�s�
l

r
�e2 
 e2 � e3 
 e3� �34�

for all times s from the start of crystallization up to and including the current time t, where l is the
constant stretch imposed on the sample along the 1-1 direction. This results in the expressions

F��t� � l
J 1=3�t�e1 
 e1 �

���������������
J 1=3�t�

l

s
�e2 
 e2 � e3 
 e3� �35�

Fig. 5. Stress relaxation of natural rubber at ÿ268C as a function of time for four di�erent stretches (reproduced from Gent, 1954).
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and

F�s �t� �
J 1=3�s�
J 1=3�t�e1 
 e1 �

���������������
J 1=3�t�
J 1=3�s�

s
�e2 
 e2 � e3 
 e3�: �36�

Introduction of Eqs. (35) and (36) into Eq. (7) and assuming a stress ®eld compatible with uniaxial
extension with stress-free lateral surfaces, as given in Eq. (22), results in two independent equations.
Eliminating the average principal stress from these two equations results in an expression for the axial

Fig. 6. Volume reduction of natural rubber at ÿ268C as a function of time for three di�erent stretches (reproduced from Gent,

1954). Gent, using linear scaling, superimposed on the volume reductions the stress relaxation as shown. The data for stress stops

when the sample fully relaxes, while the crystallization continues long after full stress relaxation and is accompanied by the stretch-

ing of the samples.

Fig. 7. Stress relaxation of natural rubber at ÿ268C as a function of percent reduction in volume for three di�erent stretches

(extracted from Fig. 5 and 6). The solid lines indicate the prediction of the model.
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stress given by

T11�t� � 2r�t�
8<:b�t��A1 � 2A2

ÿ
I �1 ÿ 3

��" l2

J 2=3�t� ÿ
J 1=3�t�

l

#
�
�t
ts

�
C1 � 2C2

ÿ
I �4 ÿ 3

��
"
J 2=3�s�
J 2=3�t� ÿ

J 1=3�t�
J 1=3�s�

#
a�s�ds

9=;, �37�

where

I �1 �
l2

J 2=3�t� �
2J 1=3�t�

l

and

I �4 �
J 2=3�s�
J 2=3�t� �

2J 1=3�t�
J 1=3�s� : �38�

The ®rst thing to notice in the expression for stress is that the term with the integral, which represents
the contribution of the crystals to the process of stress relaxation, is not a function of stretch. Therefore,
the part of the model which represents the contribution of the crystals will result in a stretch
independent shift of the stress. In other words, consistent with the work of Flory (1947) and others, the
mechanism of stress relaxation is simply derived from the replacement of stretched amorphous rubber
by unstressed crystals. Up to now, there is no evidence that C2 is needed to model any aspect of the
response of natural rubber. As you may have noticed, the terms associated with A2 and C2 naturally
vanished from the expression for the modulus, as was shown in the last section. Any other higher order
terms which we would introduce into the model for the free energy given in equations Eqs. (3) and (4)
would also vanish from the expression for the elastic modulus. Keeping these in mind, it will be
assumed that C2 can be set to zero. The primary reason for introducing C2 into the model was to show
that higher order terms such as A2 and C2 do not appear in the expression for modulus (see Eq. (27))
during unconstrained crystallization.

Introducing expressions (11) and (12) into Eq. (37) and taking C2=0 results in

T11�t� � 2r�t�
8<:b�t�y�t��A11 � A12�1ÿ b�t�� � 2�A21 � A22�1ÿ b�t����I �1 ÿ3�

�
"

l2

J 2=3�t� ÿ
J 1=3�t�

l

#
� f�y�t��

�t
ts

�C11 � C12�1ÿ b�s���
"
J 2=3�s�
J 2=3�t� ÿ

J 1=3�t�
J 1=3�s�

#
a�s�ds

9=;: �39�

Material parameters A11, A21, C11 and C12 were evaluated in the previous sections. It remains to
evaluate A12 and A22 using the data of Gent as presented in Fig. 7. Gent's data shows that stress goes to
zero at 1% volume reduction (b = 0.867) for a stretch of l=1.5 and the stress goes to zero at 1.4%
volume reduction (b = 0.813) for a stretch of l=3. These two points are used to evaluate A12 and A22

as
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A12 � ÿ6:57� 10ÿ6
MPa

kg=m3

and

A22 � 1:70� 10ÿ7
MPa

kg=m3
: �40�

To obtain the two equations to solve for these material constants, one needs to integrate the integral in
Eq. (39), noting that the volume is given by the expression

J�y,b� � r0
rA0

JA�y�b� r0
rC0

JC�y��1ÿ b�: �41�

Also, the temperature at both time s and t is set to the experiment temperature of 2478K for the
evaluation of r, J and f.

Fig. 7 also shows how well the model ®ts the response observed by Gent (1954). The ®rst thing to
note is that where the theoretical graphs intersect the vertical axis represents the elastic response of the
fully amorphous natural rubber at -268C, which directly results from the modi®ed neo-Hookean model
®t to the experimental results of Min (1976) at 228C. These points are not ®t to the data of Gent, and
are an indication that the rubbers are similar and that the modi®ed neo-Hookean model is appropriate
for modeling fully amorphous natural rubber over this approximately 508 range. Second, the reader will
note that even though the model does not actually result in a linear relation between stress relaxation
and the degree of crystallization, it is su�ciently linear that the variation of the model from linearity is
within the uncertainty of the experimental data. Comparison using a straight edge shows that the
response for the stretch of 2 and 3 shows noticeable nonlinear behavior, yet the behavior seems to be
consistent with the data. Third, even though the model was only ®t to one point on the stress relaxation
at a stretch of 1.5 and one point on the stress relaxation at a stretch of 3, the model predicts the stress
relax at a stretch of 2 with su�cient accuracy. No points were ®t to the stress relaxation at a stretch of
2, yet the model accurately predicts the slope of the relaxation and captures the very nonlinear
dependence of the stress relaxation on stretch. The reader will also note that the volume reduction at
zero stress is practically identical for both a stretch of 1.5 and 2, a feature accurately captured by the
model, and substantially di�erent for the stretch of 3.

5. Summary and conclusion

In this paper, material parameters for the model proposed in Negahban (2000b) were selected so the
proposed model would reproduce three distinctly di�erent mechanical tests. These tests were the
instantaneous tensile response at 228C, the increase in elastic modulus due to crystallization of
unconstrained natural rubber at 08C, and the stress relaxation associated with crystallization under
constant stretch at ÿ268C. The selected parameters accurately reproduce the above experimental results,
yet many assumptions were made in the process of evaluating the material parameters. Like any other
semi-phenomenological model, the validity of these assumptions can only be veri®ed by comparison to
additional experiments. Initial comparisons done using the data of Gent (1954) indicate that the
assumptions are justi®ed.

Since the model is all inclusive, one can use the above parameters to predict the response under
di�erent conditions. For example, based on Eq. (28), Fig. 8 shows the elastic modulus of natural rubber
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at four di�erent temperatures as a function of the percent increase in density for unconstrained
isothermal crystallization.

The constants evaluated in this paper and those evaluated in Negahban (2000b) fully determine the
free energy of natural rubber, only leaving a model for the rate of crystallization to be developed. Even
without a model for the rate of crystallization, one can now use the model to study some combined
thermomechanical responses of natural rubber. Examples are: the evaluation of the anisotropic thermal
expansion of samples which have crystallized under a constant stretch, or the e�ect of crystallization
under stretch on the melting temperature and on equilibrium crystallinity. The equilibrium response
under constant stretch and during slow extension has been evaluated for this model and is presented in
Negahban (1997b).
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Fig. 8. Elastic modulus as a function of percent change in density for unconstrained isothermal crystallization at the indicated tem-

peratures. The solid lines are as predicted by the model, the data is from Leitner (1955).
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